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Abstract. The existence of edge waves, or trapped modes, travelling above a single long horizontal submerged
cylinder is well established in the linearised theory of water waves. In the present paper, the possibility of
wave-trapping by multiple submerged horizontal circular cylinders is considered. The trapped mode solutions
are constructed by means of a multipole approach combined with an addition formula for Bessel functions and
requires finding the non-trivial solutions of a real infinite system of algebraic equations. The case of a single
submerged cylinder is returned to briefly, where results for symmetric trapped modes are reproduced and new
numerical results for antisymmetric modes are presented. A large range of results are also presented for multiple
cylinders.
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1. Introduction

In 1846 Stokes produced a simple solution to the linearized water wave equations which
represented a wave travelling in the long-shore direction over a uniformly sloping beach.
This solution, now called an edge wave, decays in the direction of increasing depth and exists
for all beach anglesβ provided that the long-shore wavenumberk is related to the wave
frequencyω/2π , through the relationω2 = gk sinβ. It was not until over a century later
that a further localized solution was discovered by Ursell [1]. He proved, using multipole
expansions and infinite determinants, that there existed a wave travelling along the top of a
totally submerged horizontal cylinder of infinite extent, in infinitely-deep water. The solution
decays with horizontal distance away from the cylinder axis and exists for a particular relation
between its wavelength and frequency depending on its radius and depth of submergence.
Ursell’s proof required the radius of the cylinder to be sufficiently small. This restriction was
removed by Jones [2] who proved, using deep results from the theory of unbounded operators,
that such trapped modes existed for a wide class of submerged infinitely-long horizontal
cylinders which are symmetric about the vertical axis. A simpler proof based on potential
theory and comparison theorems was later provided by Ursell [3]. For a description of recent
work on trapped modes above submerged bodies in more general situations, see Evans and
Kuznetsov [4].

The method used by Ursell for the submerged horizontal circular cylinder was to construct
a solution in terms of an infinite series of multipoles each of which satisfied all the conditions
of the problem except for the Neumann condition on the surface of the cylinder. Application
of this condition resulted in a homogeneous real infinite system of equations for the Fourier
coefficients in the multipole expansion. By an ingenious double-limit procedure, he was able
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418 R. Porter and D. V. Evans

to show that the infinite determinant of this system vanished for a particular relation between
frequency and wavelength along the top of the cylinder provided the cylinder was sufficiently
small. In 1985 McIver and Evans [5] revisited the problem and sought solutions by computing
the real zeros of the infinite determinant for all parameter values. They found that for a
cylinder of arbitrary size, there was always at least one trapped mode as is guaranteed by
the existence proofs of [2] and [3]. However, they also found that as the highest point of the
cylinder approached the free surface, further trapped modes occurred, each mode having a
distinct relationship between frequency and wavelength along the cylinder. The modes were
all, by construction, symmetric about a vertical plane through the axis of the cylinder.

In the present paper, we generalize the problem by considering possible trapped modes
in the presence of any number of distinct, non-overlapping totally submerged infinitely-long
circular cylinder of any size and placed in any position. The authors are not aware of any pre-
vious results for trapped modes over multiple submerged bodies. However, the method, which
involves the use of Graf’s addition formulae for Bessel functions to shift co-ordinates between
cylinders, has been used by recently by Linton and McIver [8] to consider the scattering of
waves by any number of bottom-mountedverticalcylinders in a channel. More pertinently, the
present authors have used the technique to consider the possible trapped modes in the vicinity
of any number of bottom-mounted vertical cylinders positioned on the centre-plane of a chan-
nel. Thus it was found (Evans and Porter [7]) that in general the number of trapped modes for a
given geometry was the same as the number of cylinders present and each mode approaches a
unique mode for a single cylinder as the spacing between the cylinders increased. We expect to
find a similar behaviour in the present case of any number of submerged horizontal cylinders
but the situation is more complicated by the fact that even for a single horizontal cylinder,
the number of trapped modes depends critically upon its depth of submergence. Again it will
be possible to explore the effect on the trapped modes of varying both size and position of
the cylinders. This was not possible in the case of the vertical cylinders in the channel since
in order to guarantee the occurrence of trapped modes the cylinders had to remain on the
centre-plane of the channel.

The plan of the paper is as follows. The problem is formulated in Section 2 where the
infinite system of equations is derived for the general case using results developed in the
Appendices. Some special cases are considered which reduce the complexity of the system
through symmetry. These include all cylinders lying in the same vertical plane when the
system decouples into a symmetric and an antisymmetric system and two identical equally-
submerged cylinders, where the system reduce to two systems describing either even or odd
solutions about the vertical plane mid-way between the cylinders. The case of a single cylinder
is readily deduced from the general formulation and takes the form of two decoupled systems
for symmetric and antisymmetric solutions. The former was the system computed by McIver
and Evans [5] but the latter system is new and computations in Section 3 confirm the exis-
tence of antisymmetric solutions for a single cylinder sufficiently close to the free surface.
Such antisymmetric solutions were earlier reported by Martin [6] using a boundary integral
equation based on Green’s theorem. He obtained antisymmetric solutions above both circular
and elliptic cylinders. A variety of results are presented in Section 3. For the case of two
identical cylinders of radiusa, these include curves showing the variation ofK/k with ka

for trapped modes for the given geometry. HereK = ω2/g, andk is the wavenumber in the
direction of the axis of the cylinders. Also investigated is the variation ofK/k as cylinders
are moved apart from one another where we expect the results to converge to those for single
cylinders in isolation.
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Figure 1. General configuration of submerged cylinders.

2. Formulation and solution

The solution to the classical linearized water wave equations may be expressed in terms of a
three-dimensional time-dependent velocity potential,8(x, y, z, t) which we may write in the
form

8(x, y, z, t) = Re{φ(x, y) ei(kz−ωt)}, (2.1)

where we assume time-harmonic motion of angular frequencyω and a periodicity in the
z-direction having an associated wavenumberk. We choose Cartesian co-ordinates withx,
z lying in the undisturbed free surface andy vertically downwards. The two-dimensional
functionφ(x, y) now satisfies the following boundary-value problem

(∇2− k2)φ = 0, in the fluid, outside the cylinder, (2.2)

Kφ + φy = 0, ony = 0, (2.3)

whereK = ω2/g andg is the acceleration due to gravity. Physically, the decomposition in
(2.1) describes a wave travelling parallel to the cylinders with a wavenumberk parallel to the
z-coordinate. In the corresponding scattering problem, an incident wave of wavenumberK

making an angleθ to the cylinders givesk = K sinθ and clearlyK > k. This provides a
cut-off wavenumberK = k, and choosingK < k in the absence of an incident wave field
implies that waves cannot radiate tox = ±∞. Thus, forK < k,

φ→ 0, as|x| → ∞, (2.4)

whilst

∇φ→ 0, asy →∞, (2.5)

φn = 0, on the surface of each cylinder, (2.6)
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wheren denotes the normal derivative, completes the boundary-value problem.
The configuration consists ofN cylinders, the centre of cylinderj placed at(ξj , ηj ) and

with radiusaj (j = 1, . . . , N) such that all cylinders are submerged and no two cylinders
intersect. We define local polar coordinates,(rj , θj ) about the centre of each cylinder by

x = ξj + rj sinθj ,

y = ηj + rj cosθj ,
(2.7)

so that angles are measured anti-clockwise and with respect to the downward vertical. Also
worth defining at this stage is

Rkj = {(ξk − ξj )
2+ (ηk − ηj )

2}1/2, Rjk = Rkj , (2.8)

αkj = tan−1

(
ξk − ξj

ηk − ηj

)
, αjk = π + αkj (2.9)

being the relative distance and orientation between cylindersj andk as shown in Figure 1.
The fundamental solution to (2.2) having a singularity at the centre of cylinderj is

Kn(krj ) einθj . The modification to these singular solutions satisfying (2.3) are the so-called
multipoles derived in Appendix A. Thus from (A.8) we defineφ

j
n(rj , θj ) = εn Re{wn(rj , θj )}

andψ
j
n (rj , θj ) = εn Im{wn(rj , θj )} and so

φj
n(rj , θj ) = εnKn(krj ) cosnθj + εn(−1)n

×
∫ ∞

0

k cosht +K

k cosht −K
e−k(y+ηj ) cosht coshnt cos{k(x − ξj ) sinht} dt (2.10)

and

ψj
n (rj , θj ) = εnKn(krj ) sinnθj − εn(−1)n

×
∫ ∞

0

k cosht +K

k cosht −K
e−k(y+ηj ) cosht sinhnt sin{k(x − ξj ) sinht} dt (2.11)

satisfying (2.2)–(2.5). It is convenient to introduce the factorεn defined byε0 = 1, εn = 2, for
n > 1, though redundant in (2.11) sinceψ

j

0 ≡ 0; its purpose becomes clear later in the paper.
The real symmetric and antisymmetric multipoles in (2.10) and (2.11) above (respectively)
are the building blocks of the solution since we now write the full potential as

φ(x, y) =
N∑

j=1

∞∑
n=0

{
Aj

nφ
j
n(rj , θj )+ Bj

nψj
n (rj , θj )

}
(2.12)

being the sum over all cylinders and all multipoles, withA
j
n, B

j
n coefficients to be determined

(Bj

0 = 0 is assumed). This is achieved by imposing the remaining condition (2.6) of no-flow
on the cylinder bodies, written more precisely as

∂φ

∂rk

∣∣∣∣
rk=ak

= 0, k = 1, . . . , N. (2.13)
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In order to impose this condition, it is necessary to express the potential in terms of local polar
coordinates(rk, θk) only. This requires shifting the coordinates from cylinderj to cylinderk
in (2.10) and (2.11) above. Thus, using (B.2), (B.3), (B.12) and (B.13) from Appendix B, we
obtain

φk
n(rk, θk) = εnKn(krk) cosnθk +

∞∑
m=0

Im(krk)c
kk
mn cosmθk (2.14)

=
∞∑

m=0

Im(krk)
{
(Ckj

mn + ckj
mn) cosmθk

+ (Dkj
mn + dkj

mn) sinmθk

}
, j 6= k, (2.15)

ψk
n(rk, θk) = εnKn(krk) sinnθk +

∞∑
m=0

Im(krk)f
kk
mn sinmθk (2.16)

=
∞∑

m=0

Im(krk)
{
(Ekj

mn + ekj
mn) cosmθk

+ (F kj
mn + f kj

mn) sinmθk

}
, j 6= k, (2.17)

whereC
kj
mn, D

kj
mn, E

kj
mn andF

kj
mn are defined in (B.4)–(B.7) and where

ckj
mn = εnεm(−1)m+n

∫ ∞
0

k cosht +K

k cosht −K
e−k(ηk+ηj ) cosht

× coshnt coshmt cos{k(ξk − ξj ) sinht} dt, (2.18)

dkj
mn = εnεm(−1)m+n

∫ ∞
0

k cosht +K

k cosht −K
e−k(ηk+ηj ) cosht

× coshnt sinhmt sin{k(ξk − ξj ) sinht} dt, (2.19)

ekj
mn = −εnεm(−1)m+n

∫ ∞
0

k cosht +K

k cosht −K
e−k(ηk+ηj ) cosht

× sinhnt coshmt sin{k(ξk − ξj ) sinht} dt, (2.20)

f kj
mn = εnεm(−1)m+n

∫ ∞
0

k cosht +K

k cosht −K
e−k(ηk+ηj ) cosht

× sinhnt sinhmt cos{k(ξk − ξj ) sinht} dt. (2.21)

We may now expand the total potential about thekth cylinder, thus

φ(rk, θk) =
∞∑

n=0

{
εnKn(krk)

{
Ak

n cosnθk + Bk
n sinnθk

}

+
∞∑

m=0

Im(krk)
{
Ak

nc
kk
mn cosmθk + Bk

nf
kk
mn sinmθk

}}
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+
N∑

j=1
6=k

∞∑
n=0

∞∑
m=0

Im(krk)
{
Ak

n

(
(Ckj

mn + ckj
mn) cosmθk + (Dkj

mn + dkj
mn) sinmθk

)

+Bk
n

(
(Ekj

mn + ekj
mn) cosmθk + (F kj

mn + f kj
mn) sinmθk

)}
. (2.22)

Application of the body-boundary condition, (2.13), and use of the orthogonality of{cosmθk,
sinmθk}, m = 0, 1, . . ., results in the following coupled systems of linear equations

εmK ′m(kak)A
k
m + I ′m(kak)

∞∑
n=0

Ak
nc

kk
mn

+I ′m(kak)

N∑
j=1
6=k

∞∑
n=0

{
Aj

n(C
kj
mn + ckj

mn)+ Bj
n(Ekj

mn + ekj
mn)
} = 0, (2.23)

εmK ′m(kak)B
k
m + I ′m(kak)

∞∑
n=0

Bk
nf

kk
mn

+I ′m(kak)

N∑
j=1
6=k

∞∑
n=0

{
Aj

n(D
kj
mn + dkj

mn)+ Bj
n(F kj

mn + f kj
mn)
} = 0, (2.24)

where in both casesk = 1, . . . , N andm = 0, 1, . . .. In practice, we truncate the infinite
system atn = M, using the fact thatBj

0 = 0, to leave aN(2M + 1) × N(2M + 1) linear
system of algebraic equations.

2.1. A NOTE ON EFFICIENT NUMERICAL COMPUTATIONS

In order to compute (2.23), (2.24), we can take advantage of various symmetries involving
the coefficients. This was made possible by introducing the factorεn in the definition of the
multipoles in (2.10), (2.11). Thus, it is noted that

Ckj
mn = Ckj

nm = (−1)m+nCjk
mn, ckj

mn = ckj
nm = cjk

mn,

Dkj
mn = Ekj

nm = (−1)m+nDjk
mn, dkj

mn = −ekj
nm = −djk

mn,

Ekj
mn = Dkj

nm = (−1)m+nEjk
mn, ekj

mn = −dkj
nm = −ejk

mn,

F kj
mn = Fkj

nm = (−1)m+nF jk
mn, f kj

mn = f kj
nm = f jk

mn.

2.2. CYLINDERS WITH CENTRES ALL LYING IN THE SAME VERTICAL PLANE

If the centres of allN cylinders lie in a vertical plane then a further simplification to the system
(2.23), (2.24) can be made. In this case,ξk = ξj andαkj = 0 or π for all j, k. This implies
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D
kj
mn = E

kj
mn = d

kj
mn = e

kj
mn = 0 for all m,n, k, j . As a result, the two systems (2.23), (2.24)

decouple into systems forAj
n andB

j
n .

εmK ′m(kak)A
k
m + I ′m(kak)

∞∑
n=0

Ak
nc

kk
mn + I ′m(kak)

N∑
j=1
6=k

∞∑
n=0

Aj
n(C

kj
mn + ckj

mn) = 0, (2.25)

εmK ′m(kak)B
k
m + I ′m(kak)

∞∑
n=0

Bk
nf

kk
mn + I ′m(kak)

N∑
j=1
6=k

∞∑
n=0

Bj
n(F kj

mn + f kj
mn) = 0. (2.26)

This is to be expected, since the geometric symmetry induced by placing all cylinders on the
same vertical plane necessarily gives rise to a solution consisting of a linear combination of
uncoupled pure symmetric and antisymmetric modes which are described by the coefficients
A

j
n andB

j
n , respectively.

2.3. THE SINGLE CYLINDER SOLUTION

For purposes of comparison with multiple cylinders we will be concerned also with the trapped
mode solution in the case of a single isolated cylinder of radiusa = a1 submerged toη = η1.
This is readily available from the generalN-cylinder formulation by taking, unsurprisingly,
N = 1. Then the systems (2.23), (2.24) decouple into the symmetric and antisymmetric
trapped mode solutions

εmK ′m(ka)A1
m + I ′m(ka)

∞∑
n=0

A1
nc

11
mn = 0, m = 0, 1, 2, . . . (2.27)

and

εmK ′m(ka)B1
m + I ′m(ka)

∞∑
n=1

B1
nf

11
mn = 0, m = 1, 2, . . . , (2.28)

which can again be solved numerically by truncation to a sizeM.

2.4. TWO IDENTICAL EQUALLY SUBMERGED CYLINDERS

Take two identical cylinders submerged to the same depth such thata = a1 = a2, η = η1 = η2

andξ1 = −ξ2. Thenx = 0 is a line of geometric symmetry between the two cylinders about
which the potential is either a symmetric (even) or an antisymmetric (odd) function. In this
case the system (2.23), (2.24) simplifies in the following way.

An even/odd solution impliesφ(x, y) = ±φ(−x, y) respectively. From (2.12) this requires
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0 =
∞∑

n=0

{
A1

nφ
1
n(r1, θ1)+ B1

nψ
1
n(r1, θ1)

}
±{A2

nφ
2
n(r1, 2π − θ1)+ B2

nψ
2
n(r1, 2π − θ1)

}
, (2.29)

whilst from (2.14), (2.16) it is easily verified thatφ2
n(r1, 2π−θ1) = φ1

n(r1, θ1) andψ2
n(r1, 2π−

θ1) = −ψ1
n(r1, θ1). Thus, (2.29) reduces to

A1
n = ∓A2

n

B1
n = ±B2

n

}
∀n, for even/odd solutions

and this simplifies (2.23), (2.24) to

εmK ′m(ka)A1
m + I ′m(ka)

∞∑
n=0

{A1
n(c

11
mn ∓ (C12

mn + c12
mn))± B1

n(E
12
mn + e12

mn)} = 0, (2.30)

with

εmK ′m(ka)B1
m + I ′m(ka)

∞∑
n=0

{B1
n(f

11
mn ± (F 12

mn + f 12
mn))∓ A1

n(D
12
mn + d12

mn)} = 0, (2.31)

where the upper (lower) sign refers to an even (odd) potential.

Figure 2. Curves showing the dispersion relation for
the symmetric (—–) and antisymmetric (- - -) modes
whenη/a = 1·10.

Figure 3. Curves showing the dispersion relation for
the symmetric (—–) and antisymmetric (- - -) modes
whenη/a = 1·05.
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Figure 4. Curves showing the dispersion relation for
the symmetric (—–) and antisymmetric (- - -) modes
whenη/a = 1·01.

Figure 6. Curves showing the dispersion relation for
the symmetric (—–) and antisymmetric (- - -) modes
for two equal cylinders withη/a = 1·05 andλ = 2.
Dotted lines represent single cylinder results.

Figure 5. The free surface elevation corresponding to the four trapped modes present atka = 3 and for
η/a = 1·01. (a) first symmetric, (b) first antisymmetric, (c) second symmetric (d) second antisymmetric.

3. Results and discussion

3.1. THE SINGLE CYLINDER

The computation of the trapped modes requires that the infinite system (2.23) (or (2.24) in the
case of antisymmetric modes) be truncated to a size,M, say. This must be chosen carefully
to ensure adequate convergence, and it was found (as in [5]) that a larger truncation size was
needed as the cylinder moved closer to the free surface (asη/a → 1). Thus, for ‘moderate’
submergence depths such asη/a ≈ 1·1, three decimal places accuracy can be achieved with a
value ofM = 10, whilst forη/a = 1·01, a value ofM = 40 was required for similar accuracy
irrespective of the type of mode and in accordance with the findings of McIver and Evans [5].
In fact, the same rules regarding the choice ofM were found to apply for multiple cylinders
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however they are situated with respect to each other, the truncation parameter being deter-
mined in this case by the cylinder closest to the free surface. In all cases, the coefficients were
scaled byÃj

m = εmK ′m(kaj )A
j
m, B̃

j
m = εmK ′m(kaj )B

j
m, giving a system whose determinant is

of O(1) for all M.
We expect the trapped mode frequencies for multiple cylinders to approach those for each

of the individual cylinders in isolation as the cylinders are moved far enough apart. Such a sit-
uation arose in the consideration of trapped mode frequencies about multiple vertical cylinders
in uniform channels by the same authors (see [7]). It is therefore necessary to establish results
for trapped mode frequencies due to a single submerged horizontal cylinder. McIver and Evans
[5] computed modes which were symmetric about the vertical plane containing the centre of
the cylinder, using Ursell’s [1] original multipole formulation. Ursell had previouslyproved
that such a symmetric trapped mode exists for sufficiently small cylinders, basing his proof
on the multipole formulation. McIver and Evans [5] found that as the cylinder approaches the
free surface, then further modes were present. Indeed, the second mode was estimated to occur
at a submergence depth to cylinder radius ratio ofη/a ≈ 1·07. As [1] pointed out, the proof of
the existence of an antisymmetric trapped mode fails when using the multipole construction
of the solution. However, we find numerically that they exist and interlace with the symmetric
trapped mode results of [5] such that there is an increasing number of modes as the cylinder
moves closer to the free surface. Figures 2, 3 and 4 show the dispersion relation satisfied by
the trapped modes for the submergence depths ofη/a = 1·10, 1·05 and 1·01, respectively.
There is at least one symmetric and one antisymmetric trapped mode in all three figures. Our
computations suggest that an antisymmetric mode exists provided the depth to radius ratio,
η/a . 1·18. In Figure 3, whereη/a = 1·05 it can be seen that a second symmetric mode has
appeared and in Figure 4, whereη/a = 1·01, a second antisymmetric mode is clearly present
also. A third symmetric mode cuts in throughK/k = 1 close toka = 5 although hardly
visible in Figure 4, and in fact for this submergence depth there are a total of four symmetric
modes interlaced with three antisymmetric modes, the remainder of which all occur at higher
values ofka than are shown in Figure 4). Martin [6] has also reported obtaining antisymmetric
modes numerically for both circular and elliptic cylinders.

In order to illustrate the form that both modes take, we examine the free-surface elevation
whenη/a = 1·01 andka = 3. Then from Figure 4 with these parameters, we can see there
are four modes present, two symmetric and two antisymmetric. The free surface profiles
associated with these four modes are illustrated in Figure 5. As was noted in [5] the mode
number is characterised by the number of zero crossings or nodes. Thus the first symmetric
mode has no zero crossings, the second symmetric mode one crossing and so on, whilst the
same is true of antisymmetric modes once the node atx = 0 has been discounted. The reader
is directed to [5] for a more detailed discussion of trapped modes above a single cylinder, there
being no other fundamental qualitative difference between the two types of mode. The main
conclusions from their work was the following. For a fixed frequency, the effect of increasing
the depth of submergence was to spread out the mode shape. The mode remains fairly localised
to the cylinder apart from when a mode frequency is close to the cut-off (K/k close to unity).

3.2. MULTIPLE CYLINDERS

We shall use the results for the single cylinder to draw conclusions regarding trapped modes
in the presence of more than one cylinder. There are clearly a vast number of results which
can be obtained in the case of multiple cylinders with the large range of parameters we have
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Figure 7. The free surface elevation corresponding to the four trapped modes present atka = 1 and
for η/a = 1·05. (a) symmetric/symmetric, (b) symmetric/antisymmetric, (c) antisymmetric/symmetric, (d)
antisymmetric/antisymmetric.

at our disposal. We will concentrate primarily on the case of two cylinders and in particular,
when the two cylinders are of equal size, since there are still many questions we may ask
about the behaviour of the trapped modes. It is convenient to introduce a spacing parameter
similar to [7] by writing the position of the two cylinder centres as(±λa, η). Thenλ controls
the separation of the cylinders withλ = 1 equivalent to the two cylinders touching. It should
be noted that the numerical results for the full general system forN cylinders given by (2.23),
(2.24) were cross-checked against the results for the simplified systems (2.25), (2.26) and
(2.30), (2.31) when advantage was taken of various symmetries to reduce the complexity of
the general system.

In Figure 6 we show the variation ofK/k with ka for two equal cylinders withη/a = 1·05
and with centres a distance 4a apart (orλ = 2). Then we see that there are six curves in the
range 0< ka 6 5. Because of the geometric symmetry induced by this arrangement any
trapped mode solutions must be either symmetric or antisymmetric about the plane bisecting
the two cylinders (x = 0 in this case). In order to identify the type of motion we used the
system (2.30), (2.31) in which the symmetry/antisymmetry is built into the equations. This
also has the advantage of reducing the computational effort incurred when using the full
system.

In Figure 6 the dotted curves represent the symmetric and antisymmetric trapped modes
due to asinglecylinder placed atη/a = 1·05 as shown in previously in Figure 3. It can be seen
that with each of these is associated a ‘pair’ of curves, the lower of which is symmetric about
the planex = 0, whilst the upper is antisymmetric. Aska, and hence the frequency, increases
these curves tend to those for the single cylinder. This can be explained by the fact that as the
frequency increases the motion about each of the cylinders becomes more localised and hence
the influence of one cylinder on another is reduced. As a demonstration of the form that these
trapped modes take, Figure 7 shows the free surface elevation atka = 1, where from Figure
6, four modes exist. The modes are ordered in increasingK/k, so that the first mode to be
encountered is symmetric aboutx = 0, and almost symmetric about each individual cylinder.
The second mode is antisymmetric aboutx = 0, and again almost symmetrical about each
of the cylinders. The third and fourth modes are symmetric and antisymmetric respectively
aboutx = 0, and are almostantisymmetricabout each of the cylinders. These observations
are summarised in the caption to Figure 7.
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Figure 8. The variation ofK/k with spacing para-
meterλ for two equal cylinders withη/a = 1·05,
ka = 1: (—–) symmetric and (- - -) antisymmetric
modes, (· · ·) single cylinder trapped modes.

Figure 9. Curves showing the variation ofK/k

againstθ (in degrees) for two equal cylinders as one
is rotated round the other withka = 1. At θ = 0,
η1/a = η2/a = 1·05. (—–) associated with initally
symmetric modes and (- - -) associated with initally
antisymmetric modes.

In Figure 8 we show how the curves forK/k vary with λ, the spacing parameter, as two
cylinders withη/a = 1·05, initially touching, are moved apart for a value ofka = 1. As
expected, the trapped mode frequencies tend rapidly to the values for the isolated cylinders
as the two cylinders are moved apart. Again, the geometric symmetry allows solutions which
are symmetric and antisymmetric about the planex = 0 bisecting the two cylinders. Similar
curves were observed in the case of trapped modes due to multiple vertical cylinders placed
on the centreplane of a uniform width channel by Evans and Porter [7].

In all cases detailed above, there has been symmetry in the geometry. It is interesting to
see how the trapped modes are affected by symmetry breaking. One particularly interesting
way of looking at this is as follows. Consider two equal cylinders submerged to equal depths
having both symmetric and antisymmetric trapped modes. Now rotate the centre of one of
the cylinders about the centre of the second cylinder, measuring its position byθ such that
θ = 0◦ is the initial symmetric set-up andθ = 90◦ corresponds to the first cylinder being
directly below the second. Here there is also symmetry. So in going from 0◦ to 90◦ we
have broken symmetry, then regained it. Again we use the case ofη1/a = η2/a = 1·05, a
spacing parameter ofλ = 2 and ka = 1 as the initial set-up. It can be seen from Figure
8 that there are four modes present under these parameters, alternating between symmetric
and antisymmetric asK/k increases. Atθ = 90◦ computations show that there are only two
modes, one symmetric and the other antisymmetric. Thus as the cylinder is rotated about its
neighbour, two of the modes must vanish and this is shown clearly in Figure 9. In fact they
disappear across the cut-offK/k = 1 for smallθ and forθ > 20◦ the two remaining modes
feel very little influence from the rotated cylinder which is now deeply submerged with respect
to the fixed cylinder near the free surface.

A further example of a situation where symmetry is absent is presented in Figure 10. Here
the variation ofK/k against the ratioa2/a1 of cylinder radii is plotted when one cylinder is
held fixed withη1/a1 = 1·05 whilst the radius of a neighbouring cylinder is shrunk, about a
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fixed centre withλ = 1·5, to zero with initiallyη2/a2 = 1·05. Again from Figure 8 we can see
that there are four modes initially whilst Figure 3 shows that when one of the cylinders has
shrunk to zero there remain only two modes (atka1 = 1). Hence we have a similar situation
to before where two modes will disappear across the cut-offK/k = 1. This is illustrated in
Figure 10 where reading across thea2/a1 axis from left to right corresponds to a shrinking
cylinder.

Figure 10. The variation ofK/k with the ratioa2/a1
of cylinder radii for two cylinders, one fixed with
η1/a1 = 1·05, and the other spaced withλ = 1·5:
(—–) associated with symmetric and (- - -) with
antisymmetric modes.

Figure 11. The variation ofK/k with spacing para-
meterλ for four equal cylinders withη/a = 1·05,
ka = 1: (—–) symmetric and (- - -) antisymmetric
modes, (· · ·) single cylinder trapped modes.

Figure 11 repeats Figure 8 but with four identical cylinders centred at(±λa, η), (±3λa, η),
and withη/a = 1·05,ka = 1. Initially (λ = 1) the cylinders are touching and asλ increases
the cylinders are separated from their neighbours at an equal rate. Again, as they are separated
the trapped mode frequencies tend to those for the cylinders in isolation. Figure 11 shows the
increased number of trapped modes being squashed together with respect toK/k.

4. Conclusion

The problem of trapped surface waves above an arbitrary configuration of multiple submerged
circular cylinders has been addressed. The method of solution used a combination of multipole
expansion methods and addition theorems for Bessel functions to derive an infinite system
of equations whose vanishing determinant as a function of various geometrical and wave
parameters corresponds to a trapped mode. Results for a single cylinder have been presented,
repeating those of [5] for symmetrical modes and presenting new curves of antisymmetrical
modes which interlace the symmetric modes. The total number of modes depends on the ratio
of cylinder size to submergence and increases as the cylinder approaches the free surface.
It was found numerically that for a ratio larger than approximately 1·18 no antisymmetrical
mode exists; an analytical bound on this value would appear difficult to obtain and is beyond
the scope of this paper. For multiple cylinders the following conclusions can be drawn. ForN ,
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identical cylinders, which in isolation can support a total ofQ modes, the number of modes
present for large enough cylinder separations isNQ. A similar conclusion was drawn from
the case of multiple cylinders in a channel considered by [7]. Furthermore, the influence of
neighbouring cylinders on the trapped modes frequency of a given cylinder is small confirming
the fact that trapped modes above cylinders are very local phenomena.

Appendix A. Derivation of multipoles

From Watson [9, p. 182, Equation (5)],

Kn(X) = 1

2

∫ ∞
−∞

e−X coshµ−nµ dµ, X > 0. (A.1)

Let X = kr ′ and make the change of variableµ = t + i(π − θ ′). Then

Kn(kr ′) e−inθ ′ = (−1)n

2

∫ ∞
−∞

ekr ′ cosθ ′ cosht

×e−ikr ′ sinθ ′ sinht e−nt dt, 1
2π < θ ′ < 3

2π (A.2)

and we have moved the line of integration back onto the real line sinceKn(X), X > 0 is
regular everywhere. We define

x − ξ = r sinθ, x − ξ = r ′ sinθ ′,

y − η = r cosθ, y + η = −r ′ cosθ ′,
(A.3)

(the subscriptj is dropped throughout for ease of notation),(r, θ) being polar coordinates
about(ξ, η) and(r ′, θ ′) polar coordinates, introduced for the purposes of deriving the multi-
poles only, about(ξ,−η), the image of (ξ, η) in y = 0.

After making the substitutionn = −n and using the relationK−n = Kn, we find

Kn(kr ′) einθ ′ = (−1)n

∫ ∞
0

e−k(y+η) cosht

× cosh(nt − ik(x − ξ) sinht) dt, y > −η. (A.4)

We write

wn(r, θ) = Kn(kr) einθ +
∫ ∞

0
An(t) e−k(y+η) cosht cosh(nt − ik(x − ξ) sinht) dt. (A.5)

Ony = 0,(
K + ∂

∂y

)
Kn(kr) einθ =

(
K − ∂

∂y

)
Kn(kr ′) einθ ′

= (−1)n

∫ ∞
0

(K + k cosht) e−kη cosht

× cosh(nt − ik(x − ξ) sinht) dt, (A.6)
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from (A.4). So now(
K + ∂

∂y

)
wn(r, θ)|y=0 =

∫ ∞
0

{
(−1)n(K + k cosht)+An(t)(K − k cosht)

}
×e−kη cosht cosh(nt − ik(x − η) sinht) dt

= 0,

if

An(t) = (−1)n k cosht +K

k cosht −K
. (A.7)

So the (complex) multipoles are given by

wn(r, θ) = Kn(kr) einθ + (−1)n

∫ ∞
0

k cosht +K

k cosht −K

×e−k(y+η) cosht cosh(nt − ik(x − ξ) sinht) dt, (A.8)

for y > −η. The real and imaginary parts of these form the symmetric and antisymmetric
multipoles, the former of which agree with those defined in [1].

Appendix B. Shift of coordinates

In order to expressεnKn(krj ) einθj in terms of coordinates(rk, θk), local to a cylinderk (6= j),
say, we use Graf’s addition theorem for Bessel functions [9, p. 361, Equation (8)]. Operating
with the triangle in Figure 1 having sidesrj , rk andRkj , we find that

Kn(krj ) einθj =
∞∑

m=−∞
Kn−m(kRkj ) ei(n−m)αkj Im(krk) eimθk . (B.1)

Taking real and imaginary parts and rearranging gives

εnKn(krj ) cosnθj =
∞∑

m=0

Im(krk){Ckj
mn cosmθk +Dkj

mn sinmθk}, (B.2)

εnKn(krj ) sinnθj =
∞∑

m=0

Im(krk){Ekj
mn cosmθk + Fkj

mn sinmθk}, (B.3)

where

Ckj
mn = 1

2εnεm

{
Km−n(kRkj ) cos(m− n)αkj +Km+n(kRkj ) cos(m+ n)αkj

}
, (B.4)

Dkj
mn = 1

2εnεm

{
Km−n(kRkj ) sin(m− n)αkj +Km+n(kRkj ) sin(m+ n)αkj

}
, (B.5)

Ekj
mn = 1

2εnεm

{−Km−n(kRkj ) sin(m− n)αkj +Km+n(kRkj ) sin(m+ n)αkj

}
, (B.6)

Fkj
mn = 1

2εnεm

{
Km−n(kRkj ) cos(m− n)αkj −Km+n(kRkj ) cos(m+ n)αkj

}
(B.7)
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andαkj , Rkj are defined in (2.8), (2.9).
For the next part, we introduce the identity [10, p. 376, Equation (9.6.33)]

e(1/2)z(t+1/t) =
∞∑

m=−∞
tmIm(z) (B.8)

and insert values ofz = −krk andt = exp{u+ iθk}. Then

e−k(y−ηk) coshu e−ik(x−ξk) sinhu =
∞∑

m=−∞
(−1)m emuIm(krk) eimθk , (B.9)

where(rk, θk) are defined in (2.7). Also, since

y − ηj = (ηk − ηj )+ (y − ηk),

x − ξj = (ηk − ηj )+ (x − ξk),
(B.10)

then

e−k(y+ηj ) coshu e−ik(x−ξj ) sinhu = e−k(ηk+ηj ) coshu
∞∑

m=−∞
(−1)m

×emu−ik(ξk−ξj ) sinhuIm(krk) eimθk . (B.11)

Taking real and imaginary parts, we have

e−k(y+ηj ) coshu cos(k(x − ξj ) sinhu)

=
∞∑

m=0

Im(krk){ckj
m (u) cosmθk + dkj

m (u) sinmθk}, (B.12)

e−k(y+ηj ) coshu sin(k(x − ξj ) sinhu)

=
∞∑

m=0

Im(krk){ekj
m (u) cosmθk + f kj

m (u) sinmθk}, (B.13)

where

ckj
m (u) = εm(−1)m e−k(ηk+ηj ) coshu coshmu cos(k(ξk − ξj ) sinhu), (B.14)

dkj
m (u) = εm(−1)m e−k(ηk+ηj ) coshu sinhmu sin(k(ξk − ξj ) sinhu), (B.15)

ekj
m (u) = εm(−1)m e−k(ηk+ηj ) coshu coshmu sin(k(ξk − ξj ) sinhu), (B.16)

f kj
m (u) = −εm(−1)m e−k(ηk+ηj ) coshu sinhmu cos(k(ξk − ξj ) sinhu). (B.17)
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